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The Indirect Boundary Element Method (IBEM) can be used in numerical simulations
for computing the noise radiated from vibrating structures or the combined structural
acoustic response of a system. The primary variable on the surface of the model is defined
as the difference in the pressure between its two sides. When the boundary element model
contains multiple elements connected along the same edge or openings, then the definition
of the primary variables must be adapted in order to reflect the complexity of the geometry.
In order to accommodate the new definitions, the connectivity of the boundary element
model must be updated and constraint equations must be generated and introduced in the
boundary element system of equations. Special attention is required when multiple
connections and free edges occur in the same physical location. This work presents a
mathematical formulation associated with the multiple connection and the free edge
constraints, its numerical implementation, an algorithm for the automated update of the
boundary element model, and validation of all the developments.
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1. INTRODUCTION

The boundary element method has been used extensively in numerical acoustics to
compute the noise radiated from vibrating objects, the noise generated inside acoustics
cavities from panel vibration, or to solve noise diffraction problems [1]. It is based on
expressing the acoustic variables (pressure, velocity, intensity) within the acoustic volume
as a surface integral over the boundary of the acoustic domain. The surface integral
contains the primary variables of the formulation, the Green’s function, and derivatives
of it. There are two distinct boundary element formulations available, the direct (DBEM)
and the indirect (IBEM). The difference between them stems from the definition of the
primary variables. The acoustic pressure and the acoustic velocity are the primary variables
defined in the direct method [2–4]. The difference in the pressure and the differene in the
normal gradient of the pressure are the primary variables utilized in the indirect method
[5–7]. In the direct method, there is a distinction between an interior or an exterior analysis
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depending on whether the primary variables are defined on the interior or exterior side
of the model. In the indirect method there is no such differentiation. The formulation is
developed by accounting for the acoustic medium on both sides of the model as will be
explained in section 2, therefore the primary variables contain information from the
interior and the exterior acoustic space. The indirect formulation can be combined with
a variational approach [8] in deriving the primary system of equations. Then by taking
into account the boundary conditions a numerical solution can be produced. The attractive
feature of such an approach is that the boundary element system of equations is symmetric.
It therefore requires reduced computer resources for assembly and solution. Further, an
indirect boundary element model can include openings and multiple connections (Figure
1). This is possible because the definition of the primary variables accounts for the acoustic
medium on both sides. There are two issues associated with modelling these geometric
complexities. At a free edge of an opening the acoustic pressure is the same for both sides
of the model and that must be accounted for properly when defining the primary variables
at the nodes residing along the free edge. Further, along the common edge of a multiple
connection, the number of the defined acoustic sub-spaces equals the number of panels
connected along the same edge. This creates an inconsistency in the definition of the
primary variables as explained in section 2. The algorithm developed in this work addresses
these issues.

For each type of constraint (free edge or multiple connection), work has been done in
three areas: (1) Expressing the physical implication of a free edge or a multiple connection
constraint in terms of a mathematical formulation. (2) Imposing the constraints in the
numerical system of equations associated with the boundary element formulation. (3)
Identifying the nodes where a constraint must be applied and updating the model to
accommodate the mathematical and numerical definition of the constraints.

The capability of modelling free edges and multiple connections is important in
industrial applications such as engine enclosures, powertrain models [9], intake and
exhaust systems [10], heavy equipment cabs [11] and automotive compartments [12, 13].

2. MATHEMATICAL BACKGROUND FOR THE INDIRECT BOUNDARY ELEMENT
METHOD

A brief mathematical background information on the IBEM will be given in this section.
It will allow us to identify how the definition of the primary variables is associated with
the mathematical formulation and the numerical implementation of the free edge and the

Figure 1. Simple models demonstrating a multiple connection and an opening.
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multiple connection constraints. The development work presented here is based on this
relationship.

The boundary element method is based on expressing the acoustic pressure at a point
within the acoustic medium as an integral over the boundary defining the acoustic domain.
This is known as the Helmholtz integral equation [1–3, 14],

Cp(rdr )=gs

G(r, rdr )
1p(r)
1n

−
1G(r, rdr )

1n
p(r) ds, (1)

where r is the point vector on the surface of the boundary element model, G denotes
Green’s function, rdr is the vector specifying the location of the data recovery point, p(rdr )
is the acoustic pressure at location rdr and C is the integration constant resulting from the
integration of Dirac’s function originating from the fundamental solution to the governing
differential wave equation. The acoustic variables p(r) and 1p(r)/1n on the surface of the
boundary element model are located either on the interior or exterior side of the boundary
element model.

In order to derive the integral equation for the indirect formulation the standard
approach used in indirect boundary element formulations [15, 16] is applied. The integral
equations for the two acoustic spaces are added together. Within the integral the terms
which include Green’s function are factored out and the opposite direction of the unit
normal between the two equations is taken into account in generating the new primary
variables. The equations for the primary variables and the acoustic pressure at a data
recovery point are (equations (2) and (3), respectively):

dp= p1 − p2, ddp=01p
1n11

−01p
1n12

, (2)

p(rdr )=gsa

dp(ra )
1G(ra , rdr )

1na
−G(ra , rdr )ddp(ra ) dS(ra ), (3)

where dp is the difference in pressure between the two sides of the boundary (‘‘d’’ indicates
the difference), and ddp is the difference in the normal gradient of the pressure (‘‘d’’
indicates the difference and ‘‘d’’ indicates the differentiation).

From the boundary conditions either one of the primary variables is specified, or a
relationship between them can be derived. In areas of the boundary with pressure
boundary condition, ddp becomes the unknown variable, while in areas of the boundary
with velocity or impedance boundary condition, dp comprises the unknown variable. In
this work, velocity or impedance boundary conditions are considered in the areas where
either free edges or multiple connections can be encountered. This is valid because in a
physical system, a prescribed pressure boundary condition can only be assigned to simulate
the known value of a propagating wave, and multiple connections among propagating
waves or free edges do not have any physical substance.

In order to demonstrate how the numerical system of equations is derived, a velocity
boundary condition will be assumed. The data recovery point is then positioned on the
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boundary element model, and the value of the velocity boundary condition is expressed
as an integral of the unknown primary variable dp over the surface of the model:

−irvv(rb )=gSa

dp(ra )
12G(ra , rb )

1na1nb
dS(ra ). (4)

It is attractive to use a variational approach [8] in deriving the numerical system of
equations. There are two reasons for that: computational savings since the system matrix
will be symmetric; and the potential of coupling to a symmetric finite element matrix for
solving a coupled elasto-acoustic system [6–7]. The variational principal utilized in this
solution indicates that the solution to equation (5) will also minimize the functional
presented in equation (6):

R(f)− f=0, F(f)=gS

fR(f) dS−2 gS

ff dS, (5, 6)

where R(f) is the operator on function, f is a known function, and F(f) is the quadratic
functional. In equation (4), −irvv(rb ) corresponds to f of equation (5), and the integral
in equation (4) corresponds to the operator R(f) of equation (5). Therefore the functional
is derived as

F=2 gSb

irvv(rb )dp(rb ) dS(rb )+gSb
gSa

dp(rb )dp(ra )
12G(ra , rb )

1na1nb
dS(ra ) dS(rb ). (7)

The minimization condition for the functional combined with a numerical discretization
of the boundary element model into nodes and elements results in a symmetric system of
equations,

[A]{dp}= {fv}, (8)

where {fv} is the forcing vector derived from the velocity boundary conditions, {dp} is the
vector containing the unknown primary variables at the nodal locations, and [A] is the
symmetric boundary element system of equations. Once equation (8) is solved, the
distribution of the primary variables over the surface of the model is determined and the
acoustic response can be computed at any data recovery point from equation (3).

3. MATHEMATICAL FORMULATION AND NUMERICAL IMPLEMENTATION OF THE
FREE EDGE AND THE MULTIPLE CONNECTION CONSTRAINTS

The presence of a free edge in a boundary element model has to be reflected in the
primary system (8). The physical phenomenon along a free edge is the continuity of the
acoustic pressure between the acoustic spaces from the two sides of the model. The
implication in the primary variables is that the difference in the pressure dp along the free
edge has to be zero:

dpk =0, k=1, . . . , K, (9)

where dpk is the nodal value of the primary variable dp on a node along a free edge, and
K is the total number of nodes along the free edges in the boundary element model.
Therefore, there are two issues associated with the free edge constraints. The first is to
identify the nodes on the free edges of a given boundary element model. This is
accomplished by the algorithm described in section 4. The second is to enforce the values
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of the primary variable dp corresponding to the free edge nodes to become equal to zero
during the solution of the primary system of equations. This is achieved by using a penalty
method approach. Specifically, if k is one of the nodes on a free edge then in the primary
system of equations a penalty term with a large value is added to the corresponding
diagonal term:
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=
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(10)

· · · · ·

aII dpI fI

where aij denotes the entries in the primary system of equations, I is the total number of
nodes in the boundary element model, dpi are the primary variables, fi is the forcing
function associated with the boundary conditions, and PTK is the penalty term associated
with the kth node. It is important to account for the order of magnitude of the terms in
the numerical system of equations when using the penalty method. This is achieved by
taking a summation of the absolute values of the entries of the row associated with the
diagonal term where the penalty term will be imposed:

SMk = s
I

i=1

=aki =. (11)

Then the penalty term is assigned the value

PTk =SMk108. (12)

The value of 108 is a typical one utilized in numerical applications to enforce a variable
in a system of equations to acquire a certain value during solution [17]. When the
distribution of the primary variables is computed from equation (10), the variables
corresponding to nodes residing on the free edge become zero. This impacts the numerical
values derived for the remaining nodes, and it allows us to account for the existence of
the free edges in the model. The presence of multiple connections in a boundary element
model must also be reflected in the primary system (8). Physically, around a multiple
connection, there are as many individual acoustic spaces generated as the number of
connecting faces (Figure 2). The challenge for the acoustic formulation is in defining the
primary variable dp on the nodes along the common edge of the multiple connection. By
definition, dp is equal to the difference in the pressure between the two sides of the model.
For the nodes on the multiple connection it is not possible to uniquely define the primary
variable since there are more than two acoustic spaces present. In this work this obstacle
is alleviated by generating new nodes at the connection; then a unique definition of the
primary variables is feasible. In addition, a constraint equation must be developed between
the uniquely defined primary variables. It represents their association to each other since
they originate from the same common edge. Similar to the free edge constraints, two issues
must be resolved in representing the multiple connection constraint in the boundary
element system of equation (8). The multiple connections existing in the model must be
identified, new nodes must be generated, and the nodal connectivity of the elements must
be updated accordingly. This is achieved by the algorithm presented in section 4. The
multiple connection must be expressed mathematically as a constraint equation. This is
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Figure 2. Acoustic spaces around a multiple connection.

achieved by observing the manner in which the variables are defined. For example, the
simplest multiple connection is the one where three elements are connected together
(Figure 3). The unit normal on each element dictates the definition of the primary variable
dp at the nodes of the element. The pressure of the acoustic space towards which the unit
normal is pointing is the one included first in the definition of dp. This convention
determines the constraint equation which forms the multiple connection constraint. Due
to repetition of the acoustic pressure from an acoustic sub-space in the definition of the
primary variables between neighboring elements, the primary variables originating from
the same node must satisfy the general equation

s
Nm

nm =1

cnmdpnm =0, (13)

where Nm is the total number of nodes participating in the mth multiple connection, nm

is the index associated with the mth constraint, dpnm is the primary variable on node nm ,
and cnm is the constant corresponding to the nm primary variable of the mth multiple
connection constraint. The value assigned to cnm depends on the orientation of the

Figure 3. Multiple connection with three elements.
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corresponding element. By turning in a clockwise direction around the multiple
connection, if the unit normal is along the clockwise direction, then cnm =+1, otherwise
cnm =−1. Equation (13) represents the association between the primary variables at the
multiple connection. The next step in the mathematical formulation is to impose the
condition for equation (13) to the solution vector of the primary system of equation which
can be represented as
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where index s is the index asociated with the global numbering of the first node in the mth
multiple connection constraint. Typically in a boundary element model representing a
complex geometry there are several groups of nodes associated with multiple connections
(m=1, . . . , M, where M is the total number of multiple connections). After the solution
of the system (14) is completed, the values obtained for each group of primary variables
originating from the same node must satisfy equation (13). The Langrange multiplier
method [18] is employed in order to impose the multiple connection constraints. The
functional F from equation (7), is subject to M constraints,

hm = s
Nm

nm =1

cnmdpnm =0, m=1, . . . , M, (15)

where hm is the mth multiple connection constraint equation. The Lagrange multiplier
method in this case reduces to extremizing the auxiliary functional

F*=F+ s
M

m=1

lmhm =F+ s
M

m=1

l*m 0 s
Nm

nm =1

cnmdpnm1=0, (16)

where lm represents the Lagrange multiplier associated with the mth multiple connection
constraint. Then system (14) becomes
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The size of the system increases by the total number of constraint equations which is equal
to

s
M
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The concept of multiple connection constraints in the IBEM is similar to the concept of
multi-point constraints in structural finite element analysis.

4. AUTOMATED IDENTIFICATION AND GENERATION OF THE FREE EDGE AND
MULTIPLE CONNECTION CONSTRAINTS

In order to impose the free edge or the multiple connection constraints to the numerical
system of equations, it is necessary to identify the nodes associated with each constraint
category. In addition, for multiple connection constraints, additional nodes must be
generated and the connectivity of the elements at the connections must be adapted. Also,
the value of the cnm coefficients (equation (13)) must be determined, depending on the
relative orientation of the elements at the multiple connection. In this work, the process
has been automated and implemented in a computer program. The individual steps
comprising the process are summarized as follows. (1) The element side is identified as an
entity, and the corresponding element connectivity is created. (2) Nodes on a free edge or
on a multiple connection are identified. (3) The elements involved in multiple connections
are identified, and the nodes participating in the multiple connection are duplicated. (4)
Groups of elements along a continuous side of a multiple connection are formed. (5)
Within each group, the nodes participating in the multiple connection are equivalenced
for adjacent elements within the group. (6) The constraints are generated as entities. (7)
Duplicate constraints which may exist are eliminated. (8) The numbering associated with
the valid constraints, and the numbering for the nodes, is compressed. (9) The nodes where
the free edge constraints have been assigned are inspected in order to determine whether
a multiple connection constraint must also be assigned at the same location, or if some
elements must be disassociated from the free edge constraint. (10) The constraint definition
is adapted for the nodes identified during the previous step. (11) The information on the
free edge and the multiple connection constraints is transferred to the indirect boundary
element analysis process.

It is evident that there are several procedures associated with the automated generation
of the constraints. The rational behind each one, and its functionality are described below.

The element side is identified as an entity, and the corresponding element connectivity is
created. A free edge or a multiple connection can be identified depending on how many
times a certain element side is shared between different elements. If it is attached to a
unique element then a free edge occurs. If the same side is attached to three or more
elements then a multiple connection is encountered. In this case the number of elements
sharing the same side will dictate the number Nm of the nodes involved in each constraint
relationship of equation (13). The two nodes comprising each element side are used to
define the entity. The order in which they are defined is not important. The connectivity
of an element is presented in terms of its sides in addition to its connectivity based on
nodes. This information will be used later in the process of identifying elements involved
in multiple connection constraints.

Nodes on a free edge or on a multiple connection are identified. Depending on whether
a side is involved in a free edge or in a multiple connection, the nodes of the model are
separated into groups. There are three groups of nodes. Those which are associated with
a free edge, those which are associated with a multiple connection, and those which are
not associated with any constraint. It is important to identify the nodes in the constraints
because the constraint equations (equation (9) or equation (13)) are nodal based.

The elements involved in multiple connections are identified, and the nodes participating
in the multiple connection are duplicated. The elements which have one or more nodes
attached to a multiple connection are identified. This is achieved by checking if the nodes
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of an element also belong to the group of sides associated with the multiple connections.
Each time a node is identified to be on a multiple connection, its number changes to a
unique number higher than the total number of nodes in the original model. The
connectivity of the element is adapted accordingly. The information of the original node
number is also stored for later use.

Groups of elements along a continuous side of a multiple connection are formed. Unique
groups of elements, containing all the elements along the same side of a multiple
connection are created. This is achieved by first identifying an element which has not been
associated with any group. This then comprises the first element of the new group.
Elements are inserted in the group by having a common side with any of the other elements
already within the group, provided that the common side is not along a multiple
connection. When no new elements can become part of the group, then the search for the
particular group is terminated. The process is completed when all the elements associated
with multiple connection constraints have been inserted into groups.

Within each group the nodes participating in the multiple connection are equivalenced for
adjacent elements within the group. During the third step all the nodes on the multiple
connection edges had their numbers modified to a higher unique value. This was done in
order to create new nodes at the multiple connection locations. However, nodes which
originate from the same node, and are attached to adjacent elements of the same group
have to be equivalenced. This is accomplished within this step. For every element within
a group, the number assigned to its nodes is compared to the highest node number in
original model. If the node is higher, it means that this particular node was duplicated
during the third step. This indicates that it is one of the nodes which must be potentially
equivalenced to nodes of adjacent elements within the same group. Therefore, its original
node number is compared against the original node numbers of nodes with the same
properties. The coincident nodes are equivalenced by equating all their numbers to the
lowest one. The connectivity of the elements to which they are attached is modified
accordingly.

The constraints are generated as entities. Prior to the current step the model was adapted
leading to the generation of the constraints. The latter are considered as entities comprised
by the number of nodes included in each constraint equation, the node numbers, and the
directional coefficient cnm associated with each one of the nodes. For every side entity
involved in a multiple connection constraint, the elements which share the same side are
identified. Then two constraint entities are generated for each group of nodes associated
with the two ends of the side. The orientation of the elements is identified from the order
of nodes in the element connectivity. Elements with the same orientation along the
common side are assigned the same value for the directional coefficient. Elements with
opposite orientation are assigned values of opposite sign. Since in this step two constraint
entities are generated for each constraint side, in several instances more than one constraint
has been generated for the same group of nodes. This matter is handled in the following
step.

Duplicate constraints which may exist are eliminated. Each constraint is compared
against all others. If another one is found containing the identical group of nodes, then
that one is eliminated as redundant. In this manner all the constraints are associated with
a unique group of nodes. This process was selected to be an independent step rather than
to take place concurrently with the sixth step for simplicity and reduced computations.

The numbering associated with the valid constraints, and the numbering for the nodes are
compressed. Since the redundant constraints are eliminated, the number identifying each
one of them is compressed in order to achieve a consecutive numbering scheme. Similarly
the number assigned to each one of the nodes is compressed to a sequential numbering
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Figure 4. Locations where constraints must be adjusted.

scheme. During this process the element connectivity and the constraint definitions are
updated accordingly.

The nodes where the free edge constraints have been assigned are inspected in order to
determine the locations where corrective action is required. In a boundary element model
of complex geometry, the location where a thin attachment is connected to the remaining
object requires special attention. A free edge constraint must be assigned to the node
associated with the element of the free edge. However, the remaining elements which
correspond to the continuous part of the model must be disassociated from the free edge
constraint, otherwise an artificial opening would be introduced in the model. In addition,
a multiple connection constraint might be required if multiple elements are connected at
that particular location. In order to identify the locations where the constraint definitions
must be adapted, the elements attached to the free edge constraints are inspected.
Corrective action is required only if an element edge is comprised of a node with a free
edge constraint at one end and a node with a multiple connection constraint at the other.
This criterion is utilized to identify all the locations where a thin section is attached to the
main object.

Modification of constraint definitions for locations identified during the previous step.
Extra nodes are generated for the previously identified locations. One additional node is
generated for each element corresponding to the thin section at the connection. There is
no limitation on the number of thin sections attached to the main object. The free edge
constraints are assigned to all the new nodes attached to the thin sections. At the same
time they are removed from the nodes attached to the elements corresponding to the main
object. The latter are finally inspected to determine whether a multiple connection
constraint must be defined for them or not. Figure 4 demonstrates a simple geometry where
this constraint modification is necessary.

Information transfer. Finally the updated boundary element model, including the new
nodes along the multiple connections, is utilized for the indirect boundary element analysis.
The node numbers associated with the free edges identify the locations in the system matrix
where the penalty terms must be added. The multiple connection constraints, identified in
terms of nodes involved in them, and the directional coefficients, determine the locations
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where the extra terms will be added in the system matrix in order to account for the
constraint equations.

This summarizes the algorithm developed for the automated identification and
generation of the constraint equations. As it can be deducted, for a practical application
this process can be very tedious if attempted to be completed manually. Therefore, for the
development of the algorithm presented here and its implementation, software is essential
for solving any application with complex geometry using the IBEM.

5. VERIFICATION

The validation of the multiple and free edge constraints development was performed in
three steps: (1) validation of the algorithm which generates the constraints; (2) validation
of numerical implementation by comparison to an analytical solution, and an other
alternative multizone numerical solution; (3) comparison between numerical results and
test data.

First the algorithm which generates the constraints was verified. This was achieved by
creating the constraints for a series of boundary element models with complex geometry
(Figure 5). The generation of the constraints was validated by: (1) verifying that constraints
existed in the expected locations; (2) identifying that the boundary element model was
modified accordingly; (3) inspecting that the directional coefficients were assigned properly.

The numerical implementation of the constraint equations was verified by comparing
the numerical results to an analytical solution for a transversely oscillating rigid disk [19]
and by comparing the results obtained by this developement to a multi-zone direct
boundary element solution for the complex geometry of a silencer configuration.

An analytical solution for the radiated field generated by a freely vibrating rigid disk
[19] was utilized for an initial validation. The boundary element model for the disk is
depicted in Figure 6. The transmission coefficient D1 is defined in reference [19] as

D1 =
W12k
pv2rv

, (18)

Figure 5. Typical configurations utilized in testing the constraint generation algorithm.
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Figure 6. Boundary element model of rigid disk.

where k is the wavenumber, v is the amplitude of oscillation velocity, v is the radial
velocity, and W1, the radiated power, was computed. Results for wavenumbers from 0 to
8 are presented in Figure 7. The numerical results produced in this development are
identical with the analytical results presented in Figure 4 of reference [19].

The complex geometry of a silencer including an internal baffle and an internal
cylindrical passage positioned in the middle of the baffle (Figure 8) was utilized for further
validation. Two completely different analyses methods were utilized to perform a
frequency sweep. The results obtained from this development based on the indirect method
were compared to results computed by a multi-zone direct boundary element analysis [20].
The configuration includes interior acoustic cavities connected through a duct extended

Figure 7. Numerical values for the transmission coefficient of an oscillating rigid disk.
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Figure 8. Multi-zone direct boundary element model of silencer.

within each acoustic sub-space. Each cavity is comprised of two cylinders of unequal
diameter. This configuration defines a complex geometry. The solution produced by an
alternative numerical approach is utilized for validating the development. The indirect
model is comprised of a single layer of elements. It includes both free edges and multiple
connections. The free edge constraints were assigned at the edges of the inner cylinder
connecting the two chambers. The multiple connection constraints were generated for the
locations where the inner baffle is attached to the outer shell, and the locations where the
baffle is attached to the inner cylinder. In the multi-zone DBEM, the model was divided
into three zones (Figure 8). The first and the second chamber were comprising Zones 1
and 3. The middle cylinder is designated as Zone 2. Each zone is defined as a completely
enclosed boundary element model. Therefore, overlapping elements exist at the common
boundaries between different zones. When the common boundary provides a rigid
separation between the two zones (i.e., area defining the baffle between Zone 1 and Zone
3), then the nodes and the elements for each zone are completely separate. At an open
connection between two zones (i.e., area of the opening between Zone 1 and Zone 2 at
the opening of the inner cylinder), the nodes are shared between the adjacent zones. In
the analyses, a unit velocity boundary condition was defined as excitation at the inlet of
the system, while an anechoic termination boundary condition was defined at the outlet.
Results were computed for the frequency range 100–400 Hz. The results for the acoustic
pressure at four internal points were compared between the two methods (Figures 6(a) and
(b)). Two data recovery points were located within Zone 1 (first chamber), and the other
two in Zone 3 (second chamber). Each one of the two points within each zone was located
at an off-center position. Results from the two boundary element methods for the two
points located in Zone 1 are presented in Figure 9(a). Similar results for the points located
in Zone 3 are presented in Figure 9(b). There is good agreement of the results produced
by the two different numerical methods. This validates the mathematical formulation and
numerical implementation of the free edge and the multiple connection constraints, since
it compares results produced by a model including constraints, with results computed by
a completely different numerical method (multi-zone DBEM).

Finally, test results for the noise radiated from a thin corrugated vibrating plate (Figure
10) were compared to numerical results computed by the IBEM. In this application, noise
is emitted from both sides of the plate. The model contained 1840 elements and 1920 nodes.
It also included 150 free edge constraints. The excitation from a shaker was applied at an
off-center location at 942 Hz. The vibration was measured by a laser holography technique.
It comprised the excitation boundary conditions for the acoustic analysis. A data recovery
plane (array of microphones) was defined 286 mm away from the vibrating plate. Results
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Figure 9. Comparison between DBEM and IBEM for (a) points 1 and 2 (q, DBEM-Point 1; ×, IBEM-Point
2; t,DBEM-Point 2; T, IBEM-Point 2); (b) Points 3 and 4. (r, DBEM–Point 3; q, DBEM–Point 4;
×, IBEM–Point 3; Q, IBEM–Point 4).

from the numerical analysis for the sound pressure level are presented in Figure 8. For
nine points (highlighted in Figure 11) the computed results are compared successfully to
test data collected during the test. Table 1 summarizes the results. Very good agreement
between numerical results and test data can be observed. This application offers another
validation of the formulation and implementation of the constraints in the IBEM.

Figure 10. Acoustic indirect boundary element model of thin corrugated plate.
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Figure 11. Sound pressure level distribution (dB) on data recover surface (frequency 942·00 Hz).

6. CONCLUSIONS

Multiple connections and free edges can be encountered in boundary element models
with complex geometries. In this paper the following new developments are presented: (1)
a mathematical formulation of constraints representing free edges and multiple
connections; (2) a numerical implementation of the constraints in an indirect boundary
element scheme; (3) an algorithm for the automated identification and generation of the
constraints.

All the new developments were verified through a series of validations. First the
automated generation of the constraints was verified by inspecting the locations and the
constraint equations defined for a series of complex geometries. Then numerical results
from indirect boundary element applications which included constraints were compared
to numerical results produced by the direct multi-zone boundary element method and to
an analytical solution. Finally, test data were successfully compared to numerical results
for noise radiated from a corrugated thin plate. The capability developed in this work is
necessary in order to utilize the indirect boundary element method in computing the noise
generated from the vibration of complex structures.

T 1

Comparison of SPL between numerical results and test data for
noise radiated from a corrugated plate

Point no. Measured SPL Computed SPL

1 71·0 71·6
2 70·50 70·8
3 69·4 69·6
4 67·0 68·4
5 67·0 67·8
6 67·0 67·0
7 58·5 64·4
8 61·0 64·0
9 62·0 63·4
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